Access:
- SageMaker notebook on EC2
- SageMaker console
Data:
- S3
Training Job
- data
- compute resources
- output
- training code
Deployment
- endpoint
- batch transform
Built-in Algorithms
-
Linear Learner
- Input: RecordIO, CSV, file or pipe
- Normalization
-
Hyperparameters:
- class weights
- learning rate
- l1 or l2/weight decay
- XGBoost
- Seq2Seq
- DeepAR
- BlazingText
- Object2Vec
- Object Detection
- Image Classification
- Semantic Segmentation
- Random Cut Forest
- Neural Topic Model
- Latent Dirichlet Allocation
- KNN
- Reinforcement Learning
- Hyperparameter Tuning
Spark and SageMaker
-
sagemaker-spark -
SageMakerEstimatorreturns aSageMakerModel
SageMaker Studio
Machine learning IDE
SageMaker Experiments
Tracking and managing experiments
SageMaker Debugger
- Saving gradients, model states or logs for debugging;
- Reports
-
Build-in rules:
- Monitor system metrics
- Profile model operations
- Debug model parameters
-
SMDebugclient - Insights Dashboard
- ProfilerRule
- Notifications and actions
SageMaker Autopilot
It supports:
-
Algorithms
-
Data preprocessing
-
Model tuning
-
Infrastructure
-
Human in the loop
-
Classification or Regression
-
Tabular data
-
Integrates with SageMaker Clarify
SageMaker Model Monitor
-
Drift:
- Data
- Model
- Bias
- Feature
- Outliers and anomalies
- New features
- Integration with SageMaker Clarify for bias