SageMaker

#aws #sagemaker

Access:

  • SageMaker notebook on EC2
  • SageMaker console

Data:

  • S3

Training Job

  • data
  • compute resources
  • output
  • training code

Deployment

  • endpoint
  • batch transform

Built-in Algorithms

Spark and SageMaker

  • sagemaker-spark
  • SageMakerEstimator returns a SageMakerModel

SageMaker Studio

Machine learning IDE

SageMaker Experiments

Tracking and managing experiments

SageMaker Debugger

  • Saving gradients, model states or logs for debugging;
  • Reports
  • Build-in rules:
    • Monitor system metrics
    • Profile model operations
    • Debug model parameters
  • SMDebug client
  • Insights Dashboard
  • ProfilerRule
  • Notifications and actions

SageMaker Autopilot

It supports:

  • Algorithms

  • Data preprocessing

  • Model tuning

  • Infrastructure

  • Human in the loop

  • Classification or Regression

  • Tabular data

  • Integrates with SageMaker Clarify

SageMaker Model Monitor

  • Drift:
    • Data
    • Model
    • Bias
    • Feature
  • Outliers and anomalies
  • New features
  • Integration with SageMaker Clarify for bias